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ABSTRACT

This study explored the impact of different
concentrations of zinc (Zn) precursor (10, 20, 30, and 40 mM)
on the morphological characteristics, element composition,
and crystal structure of zinc oxide (ZnO) nanorods (NRs)
synthesized on ZnO-seeded glass substrates using a
hydrothermal technique. The physical characteristics of ZnO
NRs were examined in detail using field emission scanning
electron microscope (FESEM), X-ray diffraction (XRD)
technique, and energy-dispersive X-ray (EDX) spectroscopy.
The results revealed that the grown ZnO NRs strongly
depended on the precursor concentrations of the reactants.
Using this cost-effective methodology, sundry morphologies
of ZnO structures were realized, impacting their
morphological, compositional, and structural properties.
FESEM results showed that the samples grown using 30 mM
concentration had a rods-like structure with vertical alignment
and high density, whereas samples grown using < 20 mM
concentration had a rods-like structure with random
alignment and low density. However, the samples synthesized
using 40 mM concentration showed marginal growth of the
rods. EDX analysis confirmed that O and Zn were the main
elements in the synthesized samples, indicating a formation
of high-purity ZnO NRs. XRD patterns of the samples shown
a polycrystalline wurtzite structure with (002) direction as the
prominent peak in all grown samples. In conclusion, this
study can enhance the development of ZnO NRs production
for various applications.
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INTRODUCTION

ZnO is a semiconductor material that has a significant exciton binding energy of 60 meV at
room temperature and a direct wide energy gap (Eg) of 3.37 eV (Xiaming et al., 2009).
One-dimensional (1D) ZnO nanostructures (NSs), including NRs, nanowires, nanobelts, and
nanotubes, have attracted considerable attention due to their significance in fundamental scientific
research and potential applications in electrochemical, electronic, optoelectronic, and
electromechanical nano-devices (Y1 et al., 2005), as well as bio-sensing (Kim et al., 2014). The high
surface area-to-volume ratio and direct carrier conduction path of 1D ZnO NSs confer an advantage
over other NSs types (i.e., 0D, 2D, and 3D) (Mustafa et al., 2017). Various methods were employed
to synthesize ZnO NRs, such as vapor-liquid-solid (VLS) (Klimovskaya et al., 1996), vapor-solid
(VS) (Umar et al., 2007), metal organic chemical vapor deposition (MOCVD) (Kim et al., 2005),
chemical bath deposition (CBD) (Willander et al., 2009), and hydrothermal method (Mustafa et al.,
2017). Among these methods, the hydrothermal is notable because of its simplicity,
cost-effectiveness, energy efficiency in producing ZnO NRs (Jeon et al., 2015), low-temperature
growth, vacuum-free, suitable for used different substrates with various shapes and sizes. Moreover,
this technique enables the development of ZnO NRs across large surfaces and on various substrates
that cannot endure high temperatures (Ates, 2012). Consequently, this process is a promising method
for producing 1D nanomaterials. Numerous studies have demonstrated that several critical
parameters, including precursor content (Al-Rasheedi et al., 2022), growth temperature (Mutfti ef al.,
2018), seed-layer type (Akhir et al., 2021), seed-layer thickness (Azmi et al., 2022), doping (Badgujar
et al.,2022) and ZnO composites with other substances (Mohammed, 2019), significantly influence
the development of ZnO NRs (Abdulrahman ef al., 2025). According to reports, the concentration of
the precursor has impacted the size and morphology of the formed ZnO NRs (Suhaimi and Yuwono,
2019). This study reports the production of hexagonal-shaped ZnO NRs through a simple
hydrothermal method at low temperature and examines the impact of concentration value on the
properties of the ZnO NRs. The sample morphologies and structural are characterized utilizing
FESEM, XRD, and EDX spectroscopy. The results of the ZnO NRs produced have potential
applications as semiconductors in renewable energy devices.

EXPERIMENTAL DETAILS

The samples were prepared through a two-step growth process: (i.e., deposition of a
ZnO-seeded layer on a glass substrate using thermal chemical vapor deposition technique (TCVD),
followed by the growth of ZnO NRs using hydrothermal method).

Preparation of ZnO as seed layer

ZnO seeded-layer were grown on glass substrate (1x1 cm?) by TCVD. Zn metal was obtained
from high-purity Zn acetate dehydrate (ZnAD) ((CH3COO); Zn.2H>0, 99.97%). To get rid of dust
and other contaminants, the glass substrates were ultrasonically cleaned in acetone, isopropyl alcohol
(IPA), and de-ionized water for eight minutes each. A hot air stream was then used to dry them.

To fabricate a ZnO seeded layer, cleaned glass substrates and an alumina boat containing 1 g of
ZnAD powder was arranged on a flat stainless-steel holder, ensuring a consistent separation of 4 cm
between the substrates and the boat, within a horizontal double-tube deposition reactor. The heating
procedure commenced after the quartz tube was securely sealed with a sealing flange assembly to
prevent any leakage into the surrounding environment. The growth temperature was raised to 425°C
at a rate of 10°C/min. At the designated evaporation temperature, O> gas was introduced into the
reactor at a flow rate of 200 mL/min. The growth process was maintained for 15 minutes at a pressure
of 1 atm (760 Torr). All other growth parameters were carefully regulated throughout the procedure.
Once the furnace had naturally cooled to room temperature, the samples were retrieved from the
reactor for subsequent analysis.

Preparation of the ZnO NRs

Zn0O NRs were grown up by a hydrothermal technique. ZnAD and Hexamethylenetetramine

(HMTA, 99.0%, analytical grade, Wako) with different concentrations (10, 20, 30, and 40 mM) were
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used as precursors. The precursor solution is prepared in 80 ml of deionized water with pH number
of 7, which is adjusted by adding Sodium hydroxide (NaOH) complex solution and stirred about 15
min to guarantee the consistency and dissolution of the materials. A pH-meter (model: Senz pH Duo,
manufactured in Malaysia) was utilized to measure the pH values. The mixed solution was carefully
transferred into a Teflon autoclave container, where the ZnO-seeded glass substrates were arranged
in a horizontal orientation. The hydrothermal autoclave was then subjected to heating in an oven at a
temperature of 100 °C for a period of 5 hours. Following this process, the substrate was extracted
from the autoclave and subjected to multiple rinses with water to ensure the removal of any residual
salt from its surface. Subsequently, it was allowed to dry naturally under ambient conditions.
Characterization techniques

FESEM combined with EDX spectroscopy was used to get surface pictures and verify the
growing samples' elemental compositions. Using an X-ray diffractometer (Malvern
PANalytical-Aeris) with CuKa (A = 1.5406 A) radiation running at 40 kV and 30 mA, the orientation
and crystal structure of the generated samples were confirmed. With an angle step size of 0.011°, the
samples were scanned between 25° and 75°.

RESULT AND DISCUSSION

FESEM is among the most effective instruments for examining and analyzing surfaces. Fig.
(1: a-d) displays the SEM images of the ZnO NRs formed at different precursor concentrations of Zn
of 10, 20, 30, and 40 mM, respectively. For 10 mM Fig. (1a), the samples showed the beginning of
the ZnO NRs crystallization process compared with a notable increase in the growth process for the
samples grown at higher concentrations of the precursor material Fig. (1b). For concentrations < 20
mM, the samples had a rod-like structure with random alignment and low density. It is evident that
at lower concentrations < 20 mM, the supersaturation level of ZnO nuclei remained relatively weak
(Suhaimi and Yuwono, 2019), which affected the quality of the grown samples. At 30 mM
concentration Fig. (1c), the samples demonstrated clear growth of the ZnO NRs with distinct vertical
alignment, hexagonal shape, higher length, and larger density than those prepared at other
concentrations. As the concentration increased to 30 mM Fig. (1c), more Zn*" ions were formed,
resulting in the growth of ZnO NRs to greater lengths (Amin et al., 2011). These findings are
consistent with the XRD observations Fig. (2¢). In contrast, the samples synthesized using 40 mM
concentration Fig. (1d) showed marginal growth of the rods with a decrease in the crystallization
process in the direction of the c-axis and a significant decrease in the diameter and length. This is
likely due to the precursor reaching a supersaturation level in the solution (Sofyan et al., 2019).

(a) < N 1A I;W‘ e §

Fig. 1: FESEM images of the ZnO NRs formed using different precursor concentrations of Zn.
(a) 10 mM, (b) 20 mM, (c) 30 mM, and (d) 40 mM.
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XRD is a unique analytical methodology used to elucidate the crystalline structure of diverse
materials. Fig. (2) shows the characteristic XRD patterns of the ZnO NRs made at various Zn
precursor concentrations of 10, 20, 30, and 40 mM, respectively. The diffraction patterns observed
across all samples reveal a polycrystalline nature, characterized by a wurtzite structure, with a
predominant reflection from the (002) plane at an angle of 26 = 34.5°. Due to the low free surface
energy of the (002) plane, ZnO NRs vertically orientated along the (002) direction (Saeed et al.,
2024). The XRD peaks noted at 20 Fig. (2) were matched with the planes (100), (101), (102), (110),
(103), and (200) respectively. The crystalline peaks that were noted were in good agreement with the
regular peaks indicated in the JCPDS card. No. 36-1451 and 96-101-1259 card. Several researchers
(Abdulrahman et al., 2021; Wahab et al., 2009) also noticed similar kinds of crystalline peaks for
ZnO NRs. The intense and acute diffraction of (002) peaks Fig. (2) verify the prepared samples' high
degree of crystallization (Ahmad and Mohammed, 2023). Improved crystal quality was achieved as
more Zn and O ions move to the proper growth sites (Mustafa et al., 2017). Changing the precursor
concentrations of Zn, impact on ZnO NRs' crystal quality. The synthesized ZnO NRs have been
orientated in various directions, as evidenced by the high intensity peaks (002), (100), and (101)
(Suryanarayana et al., 1998). Equations (1 and 4) (Murty et al., 2013) were used to calculate the
structural parameters of ZnO NRs samples from the XRD patterns. The results were shown in (Table
1) and included average crystallite size (D), lattice strain (g), dislocation density (5), and the
interplanar distance (spacing) (d):

D=(0941)/(fcos 8) ......... (1)
e=p/4tan0 ...l (2)
6=1/D"2 .. 3)
d(hkl) = A/2sin6 ... (4)

Where A is the wavelength of the X-ray radiation source, B is the full width at half-maximum
(FWHM) of the diffraction peak in radians, 0 is the Bragg angle of the diffraction peak, and hkl are
the Miller indices of the plane of crystal. As illustrated in Fig. (2), The (002) plane's peak intensity
was enhanced by the increase of precursor concentrations. The D and ¢ influence the shift in Bragg
peak position, FWHM, and intensity (Abbas et al., 2016). Therefore, the observed variation in the
(002) plane intensities for ZnO NRs, as depicted in Fig. (2), can be attributed to changes in crystallite
size and lattice strain effects.

Table 1: XRD result and structural parameters of the ZnO NRs formed using different precursor
concentrations of Zn.

Zn precursor concentration nkl | 26 | FWHM d (nm) D | 8*103 .
(mM) (deg.) | (deg.) Standard | Calculated | (nm) | (nm)?
10 002 | 344 0.2984 0.26 0.260 29.1 1.18 | 0.004206
20 002 | 343 | 0.1292 0.26 0.261 67.2 | 022 | 0.001827
30 002 | 34.5 | 0.2838 0.26 0.259 30.6 | 1.07 | 0.003988
40 002 | 345 | 0.2087 0.26 0.259 41.6 | 0.58 | 0.002933

The EDX characteristics have been applied for various Zn precursor concentration values, to
study the elemental chemical composition and their distribution. Fig. (3) display the existence of the
Zn and O elements with substrate elements signal (Ca and Si). The minor peaks present in the
spectrum, such as C is attributed to the carbon material pre-coating applied to prevent sample
charging during FESEM characterization (Ghazali ef al., 2021). EDX analysis confirmed that O and
Zn were the main elements in the synthesized samples, indicating a formation of high-purity ZnO
NRs (Ahmad and Mohammed, 2023). (Table 2) give the atomic and weight percentage of each
element of the ZnO NRs formed using different precursor concentrations of Zn.
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Table 2: EDX result of elemental chemical composition of the ZnO NRs formed using different
precursor concentrations of Zn.

Atomic % Weight %

Zn conc. (mM) C Ca Si 0 Zn C Ca Si 0 Zn
10 41.6 0.5 1.3 24.7 32.0 16.4 0.7 1.2 13.0 68.7
20 26.2 0.2 0.0 39.6 34.0 10.3 0.3 0.0 19.9 69.5
30 26.2 0.2 0.4 39.5 33.7 9.4 0.3 0.4 20.1 69.8
40 25.6 0.0 0.0 35.7 38.6 9.0 0.0 0.0 16.8 742
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Fig. 2: X-ray diffraction of the ZnO NRs formed using different precursor concentrations of Zn.
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Fig. 3: The EDX characteristics of the ZnO NRs formed using different precursor concentrations of
Zn (a) 10 mM, (b) 20 mM, (c) 30 mM, and (d) 40 mM.

CONCLUSIONS

In conclusion, well-aligned ZnO NRs were synthesized on ZnO-seeded glass substrates via a
hydrothermal method, utilizing different precursor concentrations of Zn (10, 20, 30, and 40 mM).
The morphological analysis indicates that precursor concentration is an acute factor influencing the
surface morphology and crystalline structure of the synthesized samples. FESEM images
demonstrated that the growth of ZnO NRs is greatly dependent on the precursor concentrations of Zn,
with the optimal ZnO NRs achieved at a concentration of 30 mM. This finding is corroborated XRD
analysis, which reveals a polycrystalline nature characterized by a wurtzite structure, vertically
aligned along the (002) plane at the c-axis, with an average crystal size (D) of approximately 31 nm.
EDX analysis confirmed that oxygen and zinc were the predominant elements in the prepared
samples, indicating the formation of high-purity ZnO NRs. Consequently, this study may enhance the
development of ZnO NRs production for various applications.
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